题目内容
【题目】己知抛物线C1:x2=2py(p>0)与圆C2:x2+y2=5的两个交点之间的距离为4. (Ⅰ)求p的值;
(Ⅱ)设过抛物线C1的焦点F且斜率为k的直线与抛物线交于A,B两点,与圆C2交于C,D两点,当k∈[0,1]时,求|AB||CD|的取值范围.
【答案】解:(Ⅰ)由题意,设抛物线C1:x2=2py(p>0)与圆C2:x2+y2=5在第一象限内的交点为R(2,m), ∴4+m2=5,
∵m>0,
∴m=1,
将(2,1)代入x2=2py,可得p=2;
(Ⅱ)抛物线C1的方程为x2=4y.直线的方程为y=kx+1,
联立x2=4y可得x2﹣4kx﹣4=0,
设A(x1 , y1),B(x2 , y2)
∴x1+x2=﹣4k,x1x2=﹣4
联立x2+y2=5可得(1+k2)x2+2kx﹣4=0,
设C(x3 , y3),D(x4 , y4),
∴x3+x4=﹣ ,x3x4=﹣ ,
∴|AB|= =4(1+k2),|CD|= ,
∴|AB||CD|=4 = × ,
∵k∈[0,1],∴k2∈[0,1],
∴|AB||CD|∈[16,24 ]
【解析】(Ⅰ)利用圆C1:x2+y2=5与抛物线C2:x2=2py(p>0)在第一象限内的交点为R(2,m),即可求m的值及抛物线C2的方程;(Ⅱ)直线的方程为y=kx+1,分别于抛物线、圆的方程联立,求出|AB|,|CD|,利用k∈[0,1]时,即可求|AB||CD|的取值范围.
练习册系列答案
相关题目