题目内容

我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+ax1x2,故有b=-a(x1+x2),c=ax1x2,即得x1+x2=-
b
a
,x1x2=
c
a

根据上述内容,若实系数方程ax3+bx2+cx+d=0(a≠0)的三个实数根分别是x1、x2、x3,则x1+x2+x3=______; x1x2x3=______.
根据题意可得
ax3+bx2+cx+d
=a(x-x1)(x-x2)(x-x3
=a(x2-xx1-xx2+x1x2)(x-x3
=a(x3-x2x1-x2x2+xx1x2-x2x3+xx1x3+xx2x3-x1x2x3
=ax3-a(x1+x2+x3)x2+a(x1x2+x1x3+x2x3)x-ax1x2x3
∴b=-a(x1+x2+x3),d=-ax1x2x3
即得x1+x2+x3=-
b
a
,x1x2x3=-
d
a

故答案为:-
b
a
,-
d
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网