题目内容
我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+ax1x2,故有b=-a(x1+x2),c=ax1x2,即得x1+x2=-,x1x2=.
根据上述内容,若实系数方程ax3+bx2+cx+d=0(a≠0)的三个实数根分别是x1、x2、x3,则x1+x2+x3=________; x1x2x3=________.
- -
分析:根据题目信息,把方程改写成用x1、x2、x3,表示的形式,然后再利用多项式的乘法展开,根据对应项系数相等列式即可求解.
解答:根据题意可得
ax3+bx2+cx+d
=a(x-x1)(x-x2)(x-x3)
=a(x2-xx1-xx2+x1x2)(x-x3)
=a(x3-x2x1-x2x2+xx1x2-x2x3+xx1x3+xx2x3-x1x2x3)
=ax3-a(x1+x2+x3)x2+a(x1x2+x1x3+x2x3)x-ax1x2x3,
∴b=-a(x1+x2+x3),d=-ax1x2x3,
即得x1+x2+x3=-,x1x2x3=-.
故答案为:-,-.
点评:本题考查了根与系数的推广,根据题目信息提供的解题思路,把方程写成用根的形式表示,再根据多项式的乘法整理成一般形式是解题的关键,难度中等.
分析:根据题目信息,把方程改写成用x1、x2、x3,表示的形式,然后再利用多项式的乘法展开,根据对应项系数相等列式即可求解.
解答:根据题意可得
ax3+bx2+cx+d
=a(x-x1)(x-x2)(x-x3)
=a(x2-xx1-xx2+x1x2)(x-x3)
=a(x3-x2x1-x2x2+xx1x2-x2x3+xx1x3+xx2x3-x1x2x3)
=ax3-a(x1+x2+x3)x2+a(x1x2+x1x3+x2x3)x-ax1x2x3,
∴b=-a(x1+x2+x3),d=-ax1x2x3,
即得x1+x2+x3=-,x1x2x3=-.
故答案为:-,-.
点评:本题考查了根与系数的推广,根据题目信息提供的解题思路,把方程写成用根的形式表示,再根据多项式的乘法整理成一般形式是解题的关键,难度中等.
练习册系列答案
相关题目