题目内容
【题目】如图,在ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
【答案】
(1)解:证明:∵CF=BE,
∴CF+EC=BE+EC.
即 EF=BC.
∵在ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形
(2)解:∵四边形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积= ABAF= BFAE.
∴AE= = = .
【解析】(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
【考点精析】根据题目的已知条件,利用平行四边形的性质的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
练习册系列答案
相关题目
【题目】某销售公司为了提高员工的工作积极性,对员工的工资结构进行改革,改革后月工资由基本保障工资与计件奖励工资组成.(计件奖励工资=销售每件的奖励金额×销售的件数)下表是甲、乙两位职工今年三月份的工资情况信息:
职工 | 甲 | 乙 |
月销售件数(件) | 100 | 80 |
月工资(元) | 4500 | 4100 |
求员工的月基本保障工资和销售每件产品的奖励金额各多少元?