题目内容
【题目】已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=40°,∠C=60°.求∠DAE的度数.
【答案】10°
【解析】
试题分析:先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC进行计算即可.
解:在△ABC中,
∵∠B=40°,∠C=60°
∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°
∵AE是的角平分线,
∴∠EAC=∠BAC=×80°=40°,
∵AD是△ABC的高,
∴∠ADC=90°
∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,
∴∠DAE=∠EAC﹣∠DAC=40°﹣30°=10°.
练习册系列答案
相关题目