题目内容
【题目】下列叙述中:任意一个三角形的三条高至少有一条在此三角形内部;以a,b,c为边b,c都大于0,且可以构成一个三角形;一个三角形内角之比为3:2:1,此三角形为直角三角形;有两个角和一条边对应相等的两个三角形全等;正确的有 个.
A. 1B. 2C. 3D. 4
【答案】C
【解析】
锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,根据以上内容即可判断①;举出反例a=2,b=c=1,满足a+b>c,但是边长为1、1、2不能组成三角形,即可判断②;设三角形的三角为3x°,2x°,x°,由三角形的内角和定理得:3x+2x+x=180,求出3x=90,得出三角形是直角三角形,即可判断③;根据有两个角和一条边对应相等的两个三角形全等即可判断④.
∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;
∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;
∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;
∵有两个角和一条边对应相等的两个三角形全等,∴④正确.
故选C.
练习册系列答案
相关题目