题目内容
【题目】在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.
(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是 ;
(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .
【答案】(1) A,C ;(2);(3) 1≤b≤或-≤b≤-1.
【解析】
(1)根据已知条件求出d的范围:1≤d≤3,再将各点距离O点的距离,进行判断是否在此范围内即可,满足条件的即为随心点;
(2)根据点E(4,3)是⊙O的“随心点”,可根据,求出d=5,再求出r的范围即可;
(3)如图a∥b∥c∥d,⊙O的半径r=2,求出随心点范围,再分情况点N在y轴正半轴时,当点N在y轴负半轴时,分情况讨论即可.
(1) ∵⊙O的半径r=2,
∴=3,=1
∴1≤d≤3
∵A(3,0),
∴OA=3,在范围内
∴点A是⊙O的“随心点”
∵B(0,4)
∴OB=4,而4>3,不在范围内
∴B是不是⊙O的“随心点”,
∵C(,2),
∴OC=,在范围内
∴点C是⊙O的“随心点”,
∵D(,),
∴OD=<1,不在范围内
∴点D不是⊙O的“随心点”,
故答案为:A,C
(2)∵点E(4,3)是⊙O的“随心点”
∴OE=5,即d=5
若, ∴r=10
若 ,
∴
(3)
∵如图a∥b∥c∥d,⊙O的半径r=2,随心点范围
∴
∵直线MN的解析式为y=x+b,
∴OM=ON,
①点N在y轴正半轴时,
当点M是⊙O的“随心点”,此时,点M(-1,0),
将M(-1,0)代入直线MN的解析式y=x+b中,解得,b=1,
即:b的最小值为1,
过点O作OG⊥M'N'于G,
当点G是⊙O的“随心点”时,此时OG=3,
在Rt△ON'G中,∠ON'G=45°,
∴GO=3
∴在Rt△GNN’中,===,
b的最大值为,
∴1≤b≤,
②当点N在y轴负半轴时,同①的方法得出-≤b≤-1.
综上所述,b的取值范围是:1≤b≤或-≤b≤-1.