题目内容
【题目】如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和 的长分别为( )
A.2,
B. ,π
C.2 ,
D.2 ,
【答案】D
【解析】解:如图所示,连接OC、OB, ∵多边形ABCDEF是正六边形,
∴∠BOC=60°,
∵OA=OB,
∴△BOC是等边三角形,
∴∠OBM=60°,
∴OM=OBsin∠OBM=4× =2 ,
的长= = ;
故选:D.
【考点精析】解答此题的关键在于理解正多边形和圆的相关知识,掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等,以及对弧长计算公式的理解,了解若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.
练习册系列答案
相关题目