题目内容

【题目】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?

【答案】楼高AB26米.

【解析】

试题分析: 因为CPD=36°,APB=54°,CDP=ABP=90°,

所以∠DCP=APB=54°,根据,,判定△CPD≌△PAB,根据全等三角形的性质进而得出AB的长.

试题解析:∵∠CPD=36°,APB=54°,CDP=ABP=90°,

∴∠DCP=APB=54°,

在△CPD和△PAB,

,

∴△CPD≌△PAB(ASA),

DP=AB,

DB=36,PB=10,

AB=36﹣10=26(m),

:楼高AB26米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网