题目内容
【题目】在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:
命中环数 | 10 | 9 | 8 | 7 |
命中次数 | 3 | 2 |
(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;
(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.
【答案】(1)4,1;(2)甲.理由见解析.
【解析】
(1)由题意知,总共射击了10次,7环占10%,所以1次7环;9环占30%,则9环有3次;
(2)计算两人的方差.然后比较方差,方差小的表示波动小,应由方差小的去.
解:(1)
命中环数 | 10 | 9 | 8 | 7 |
命中次数 | 4 | 3 | 2 | 1 |
画图如下:
(2)∵甲运动员10次射击的平均成绩为(10×4+9×3+8×2+7×1)÷10=9环,
∴甲运动员10次射击的方差= [(10﹣9)2×4+(9﹣9)2×3+(8﹣9)2×2+(7﹣9)2]=1,
∵乙运动员10次射击的平均成绩为9环,方差为1.2,大于甲的方差,
∴如果只能选一人参加比赛,认为应该派甲去.
练习册系列答案
相关题目
【题目】某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计解析,绘制了如下不完整的统计表和统计图(图).
次数 | 10 | 8 | 6 | 5 |
人数 | 3 | a | 2 | 1 |
(1)表中a= ;
(2)请将条形统计图补充完整;
(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?