题目内容

【题目】如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在A,E的异侧,BD⊥AE于D,CE⊥AE于E

(1)试说明:BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需说明理由.

【答案】
(1)证明:∵∠BAC=90°,

∴∠BAD+∠EAC=90°,

又∵BD⊥AE,CE⊥AE,

∴∠BDA=∠AEC=90°,

∠BAD+∠ABD=90°,

∴∠ABD=∠EAC,

又∵AB=AC,

∴△ABD≌△CAE,

∴BD=AE,AD=CE,

∵AE=AD+DE=CE+DE,

∴BD=DE+CE


(2)解:同理可得,DE=BD+CE
(3)解:同理可得,DE=BD+CE
【解析】(1)证明△ABD≌△CAE,即可证得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可证得;(2)(3)图形变换了,但是(1)中的全等关系并没有改变,因而BD与DE、CE的关系并没有改变.
【考点精析】本题主要考查了全等三角形的性质和旋转的性质的相关知识点,需要掌握全等三角形的对应边相等; 全等三角形的对应角相等;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网