题目内容

【题目】如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.

(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.

【答案】
(1)

①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,

∴∠ACB=∠DCE=180°﹣2×50°=80°,

∵∠ACB=∠ACD_∠DCB,∠DCE=∠DCB+∠BCE,

∴∠ACD=∠BCE,

∵△ACB,△DCE都是等腰三角形,

∴AC=BC,DC=EC,

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE.

②解:∵△ACD≌△BCE,

∴∠ADC=∠BEC,

∵点A、D、E在同一直线上,且∠CDE=50°,

∴∠ADC=180°﹣∠CDE=130°,

∴∠BEC=130°,

∵∠BEC=∠CED+∠AEB,∠CED=50°,

∴∠AEB=∠BEC﹣∠CED=80°


(2)

解:结论:AE=2CF+BE.

理由:∵△ACB,△DCE都是等腰直角三角形,

∴∠CDE=∠CED=45°,

∵CF⊥DE,

∴∠CFD=90°,DF=EF=CF,

∵AD=BE,

∴AE=AD+DE=BE+2CF.


【解析】(1)①欲证明AD=BE,只要证明△ACD≌△BCE即可.②由△ACD≌△BCE,推出∠ADC=∠BEC,由点A、D、E在同一直线上,且∠CDE=50°,推出∠ADC=180°﹣∠CDE=130°,推出∠BEC=130°,根据∠AEB=∠BEC﹣∠CED计算即可.(2)由(1)可知AD=BE,只要证明DE=2CF即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网