题目内容
【题目】给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)以下四边形中,是勾股四边形的为 .(填写序号即可)
①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.
①求证:△BCE是等边三角形;
②求证:四边形ABCD是勾股四边形.
【答案】(1)①②;(2)①证明见解析,②证明见解析
【解析】试题分析:(1)由勾股四边形的定义和特殊四边形的性质,则可得出;
(2)①由旋转的性质可知△ABC≌△DBE,从而可得BC=BE,由∠CBE=60°可得△BCE为等边三角形;②由①可得∠BCE=60°,从而可知△DCE是直角三角形,再利用勾股定理即可解决问题.
试题解析:
(1)①如图,
∵四边形ABCD是矩形,
∴∠B=90°,
∴AB2+BC2=AC2,
即:矩形是勾股四边形,
②如图,
∵∠B=90°,
∴AB2+BC2=AC2,
即:由一个角为直角的四边形是勾股四边形,
③有一个角为60°的菱形,邻边边中没有直角,所以不满足勾股四边形的定义,
故答案为①②,
(2)①∵△ABC绕点B顺时针旋转了60°到△DBE,
∴BC=BE,∠CBE=60°,
∵在△BCE中,
BC=BE,∠CBE=60°
∴△BCE是等边三角形.
②∵△BCE是等边三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=∠DCB+∠BCE=90°,
在Rt△DCE中,有DC2+CE2=DE2,
∵DE=AC,BC=CE,
∴DC2+BC2=AC2,
∴四边形ABCD是勾股四边形.
练习册系列答案
相关题目