题目内容
【题目】如图1,将△ABC纸片沿DE折叠,使点C落在四边形ABDE内点C’的位置,
(1)①若,则 ;
②若,则 ;
③探索 、与之间的数量关系,并说明理由;
(2)直接按照所得结论,填空:
①如图中,将△ABC纸片再沿FG、MN折叠,使点A、B分别落在△ABC内点A’、B’的位置,则 ;
②如图中,将四边形ABCD按照上面方式折叠,则 ;
③若将n边形也按照上面方式折叠,则 ;
(3)如图,将△ABC纸片沿DE折叠,使点落在△ABC边上方点的位置, 探索、与之间的数量关系,并说明理由.
【答案】(1)①;②;③;(2)①;②;③;(3)
【解析】
(1)①由邻补角的定义可知∠CEC′=160°,∠CDC′=130°,根据折叠的性质可求出∠CED=80°,∠CDE=65°,然后根据三角形内角和定理求解即可;
②由三角形内角和可求出∠CED+∠CDE=138°,再由折叠的性质可知∠CEC′+∠CDC′=276°,然后根据邻补角的定义可求出84°;
③由邻补角定义可知,从而,所以,∠1+ ∠CEC′+ ∠2+ ∠CDC′=360 °,结合,可求出;
(2)① 由(1)得2∠C,2∠B,2∠A,从而2(∠A+∠B +∠C),结合三角形内角和求解即可;
②由①可知, 2(∠A+∠B +∠C+∠D),结合四边形内角和求解即可;
③由①可知, ;
(3)由外角的性质可知∠2=∠3+∠C,∠3=∠1+∠C,整理可得.
解:(1)①∵,
∴∠CEC′=160°,∠CDC′=130°,
∵ ∠CED=80°,∠CDE=65°,
∴∠C= 180°-80°-65°=35°;
②∵
∴ ∠CED+∠CDE=180°-42°=138°,
∴∠CEC′+∠CDC′=276°,
∴360°-276°=84°;
③,
因为,,
所以,
因为在四边形中,,
所以,
因为,
所以.
(2)① 由①得
2∠C,2∠B,2∠A,
∴2(∠A+∠B +∠C)=360°;
②∵2∠C,2∠B,2∠A,2∠D,
∴ 2(∠A+∠B +∠C+∠D)=2×360°=720°;
③∵n边形内角和是,
∴ ;
(3).
∵∠2=∠3+∠C,
∠3=∠1+∠=∠1+∠C,
∴∠2=∠1+∠C +∠C=∠1+2∠C,
∴.