题目内容

如图,已知过坐标原点的抛物线经过A(x1,0),B(x2,3)两点,且x1、x2是方程x2+5x+6=0两根(x1>x2),抛物线顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点E的坐标;
(3)P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P、M、O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)∵x1、x2是方程x2+5x+6=0的两根(x1>x2),
解得原方程的两根分别是:x1=-2,x2=-3,
∴A(-2,0),B(-3,3),
设抛物线的解析式为,y=ax2+bx+c,则
c=0
4a-2b=0
9a-3b=3

解得:
a=1
b=2
c=0

∴抛物线的解析式是y=x2+2x.

(2)∵y=x2+2x,
∴对称轴为:x=-1,
①当OA为边时,
∵以A、O、D、E为顶点的四边形是平行四边形,
∴DEAO,DE=AO=2,
∵E在对称轴x=-1上,
∴D的横坐标是1或-3,
∴D的坐标是(1,3)或(-3,3),此时E的坐标是(-1,3);
②当AO是对角线时,则DE和AO互相平分,有E在对称轴上,且线段AO的中点横坐标是-1,
由对称性知,符号条件的点D只有一个,即是顶点C(-1,-1),此时E(-1,1),
综合上述,符合条件的点E共由两个,分别是E(-1,3)或E(-1,1).

(3)假设存在,设P(m,m2+2m),
∵B(-3,3),C(-1,-1),
∴OB2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2
∴△OBC是直角三角形,∠COB=90°,
OB
OC
=3,
∵以P、M、O为顶点的三角形和△BCO相似,
又∵∠COB=∠PMO=90°,
PM
OM
=
OB
OC
=3,或
PM
OM
=
OC
OB
=
1
3

∴|
m2+2m
m
|=3,|
m2+2m
m
|=
1
3

解得:m=1或-5或-
5
3
或-
7
3

∴存在P点,P的坐标是(1,3),(-5,15),(-
5
3
,-
5
9
),(-
7
3
7
9
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网