题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.
(1)求证:DE是⊙O的切线.
(2)若DE+EA=4,⊙O的半径为5,求CF的长度.
【答案】(1)详见解析;(2)CF=18.
【解析】
(1)根据已知条件得到OD∥AC即可,于是得到结论;
(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=5x,OH=DE=4(5x)=x1.在Rt△AOH中,由勾股定理知:x2+(x1)2=52,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×4=8,于是得到结论.
(1)∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC.
∵DE⊥AC,OD是半径,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,
∴四边形ODEH是矩形,
∴OD=EH,OH=DE.
设AH=x.
∵DE+AE=4,OD=5,
∴AE=5﹣x,OH=DE=4﹣(5﹣x)=x﹣1.
在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣1)2=52,
解得x1=4,x2=﹣3(不合题意,舍去).
∴AH=4.
∵OH⊥AF,
∴AH=FH=AF,
∴AF=2AH=2×4=8,
∵AC=AB=2OD=10,
∴CF=18.
【题目】“三八宏图展,九州春意浓”,为了解某校1000名学生在2017年3月8日“妇女节”期间对母亲表达祝贺的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问卷调查的结果绘制成如下不完整的统计表:
某校抽取学生“妇女节”期间对母亲表达祝贺的方式的统计表
方式 | 频数 | 百分比 |
送母亲礼物 | 23 | 46% |
帮母亲做家务 | ||
给母亲一个爱的拥抱 | 8% | |
其他 | 15 | |
合计 | 100% |
(1)本次问卷调查抽取的学生共有 人,其中通过给母亲一个爱的拥抱表达祝贺的学生有 人.
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.
(3)根据抽样的结果,估计该校学生通过帮母亲做家务表达祝贺的约有多少人?