题目内容
【题目】如图,在平行四边形ABCD中,E、F分别是边BC、AD上的点,有下列条件:
①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF.
若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是( )
A. ①②③④ B. ①②③ C. ②③④ D. ①③④
【答案】B
【解析】
由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,∠BAD=∠BCD,然后利用平行四边形的判定分别分析求解,即可求得答案;注意利用举反例的方法可排除错误答案.
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,∠BAD=∠BCD,
∴当①AE∥CF时,四边形AECF是平行四边形;故①正确;
当②BE=FD时,CE=AF,则四边形AECF是平行四边形;故②正确;
当③∠1=∠2时,∠EAF=∠ECF,
∵∠EAF+∠AEC=180,∠AFC+∠ECF=180,
∴∠AFC=∠AEC,
∴四边形AECF是平行四边形;故③正确;
④若AE=AF,则四边形AECF是平行四边形或等腰梯形,故④错误.
故选B.
练习册系列答案
相关题目