题目内容
(本小题满分10分)设函数(为实数)
(1)写出其中的两个特殊函数,使它们的图像不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图像;
(2)根据所画图像,猜想出:对任意实数,函数的图像都具有的特征,并给予证明;
(3)对任意负实数,当时,随着的增大而增大,试求出的一个值
解:(1)如两个函数为,函数图形略;
(2)不论k取何值,函数的图象必过定点,
且与轴至少有1个交点.证明如下:
由,得
当即时,上式对任意实数k都成立,所以函数的图像必过定点.
又因为当时,函数的图像与x轴有一个交点;
当时,,所以函数图像与x轴有两个交点.
所以函数的图象与轴至少有1个交点.
(3)只要写出的数都可以.
,函数的图像在对称轴直线
的左侧,随的增大而增大.
根据题意,得,而当时,
所以.
解析
练习册系列答案
相关题目