题目内容

【题目】先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值. 解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
问题
(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是什么形状?说明理由.
(2)若x2+4y2﹣2xy+12y+12=0,求xy的值.
(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=

【答案】
(1)解:△ABC是等边三角形.理由如下:

由题意得(a﹣3)2+(b﹣3)2+|3﹣c|=0,

∴a=b=c=3,

∴△ABC是等边三角形.


(2)解:由题意得(x﹣y)2+3(y+2)2=0…4′

∴x=y=﹣2.

∴xy=


(3)3
【解析】(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0, 整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,
∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,
则a+b+c=2﹣2+3=3.
所以答案是:3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网