题目内容
一个多边形的内角和是900°,这个多边形的边数是( )
A. 4 B. 5 C. 6 D. 7
如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为( )
A. 500米 B. 600米 C. 700米 D. 800米
计算下列各题:
(1)tan45°?sin60°•cos30°;
(2)sin230°+sin45°•tan30°.
如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论:
①b2>4ac;②ac>0; ③当x>1时,y随x的增大而减小; ④3a+c>0;⑤任意实数m,a+b≥am2+bm.
其中结论正确的序号是( )
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是_____°.
如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是( )
A. α+β=180° B. α+β=90° C. β=3α D. α﹣β=90°
如图,某矩形相框长,宽,其四周相框边(图中阴影部分)的宽度相同,都是,相框内部的面积(指图中较小矩形的面积)为,求关于的函数表达式,并写出自变量的取值范围.