题目内容
【题目】分析探索题:细心观察如图,认真分析各式,然后解答问题.
OA22=()2+1=2 S1=;
OA32=()2+1=3 S2=;
OA42=()2+1=4 S3=…
(1)请用含有n(n为正整数)的等式Sn= ;
(2)推算出OA10= .
(3)求出 S12+S22+S32+…+S102的值.
【答案】(1)(n是正整数);(2);(3).
【解析】
试题分析:(1)此题要利用直角三角形的面积公式,观察上述结论,会发现,第n个图形的一直角边就是,然后利用面积公式可得.
(2)由同述OA2=,0A3=…可知OA10=.
(3)S12+S22+S32+…+S102的值就是把面积的平方相加就可.
试题解析:(1)()2+1=n+1
Sn=(n是正整数);
(2)∵OA12=1,
OA22=()2+1=2,
OA32=()2+1=3,
OA42=()2+1=4,
∴OA1=,
OA2=,
OA3=,…
∴OA10=;
(3)S12+S22+S32+…+S102
=()2+()2+()2+…+()2
=(1+2+3+…+10)
=.
即:S12+S22+S32+…+S102=.
练习册系列答案
相关题目
【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.