题目内容
【题目】如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
【答案】(1)见解析;(2)
【解析】分析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
详解:(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF.
在△BOE和△DOF中,,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形.
(2)解:当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则DE=x,AE=8﹣x.
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(8﹣x)2,
解得x=5,即BE=5.
∵BD===4,
∴OB=BD=2.
∵BD⊥EF,
∴EO===,
∴EF=2EO=2.
练习册系列答案
相关题目