题目内容

【题目】如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

【答案】(1)见解析;(2)

【解析】分析:(1)根据平行四边形ABCD的性质,判定BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;

(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.

详解:(1)证明:∵四边形ABCD是矩形,OBD的中点,

∴∠A=90°,AD=BC=4,ABDC,OB=OD,

∴∠OBE=ODF.

在△BOE和△DOF中,

∴△BOE≌△DOF(ASA),

EO=FO,

∴四边形BEDF是平行四边形.

(2)解:当四边形BEDF是菱形时,BDEF,

BE=x,则DE=x,AE=8﹣x.

RtADE中,DE2=AD2+AE2

x2=42+(8﹣x)2

解得x=5,即BE=5.

BD===4

OB=BD=2

BDEF,

EO===

EF=2EO=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网