题目内容
在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是( )
A. 10 B. 5 C. 4 D. 3
已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
=______.
如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数(x>0)的图象与△ABC有公共点,则k的取值范围是________.
把抛物线向左平移2个单位,则平移后所得抛物线的解析式为_____.
抛物线y=(x﹣2)2﹣3的顶点坐标是( )
A. (2,﹣3) B. (﹣2,3) C. (2,3) D. (﹣2,﹣3)
如图,等腰的顶角的度数是,点是腰的黄金分割点,将绕着点按照顺时针方向旋转一个角度后点落在点处,联结,当时,这个旋转角是________度.
一元二次方程的一次项系数是( )
A. 2 B. -3 C. 3 D. -5
结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示5和2的两点之间的距离是多少.
②数轴上表示﹣2和﹣6的两点之间的距离是多少.
③数轴上表示﹣4和3的两点之间的距离是多少.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.
(3)应用:
①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.
②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.
③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.
(4)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.