题目内容

如图19,E、F、M、N是正方形ABCD四条边AB、BC、CD、DA上可以移动的四个点,每组对边上的两个点,可以连接成一条线段.

(1)如图20,如果EF∥BC,MN∥CD,那么EF      MN(位置),EF      MN(大小)

(2)如图21,如果E与A,F与C,M与B,N与D重合,那么EF      MN(位置),EF     MN(大小).

(3)当点E、F、M、N不再处于正方形ABCD四条边AB、BC、CD、DA特殊的位置时,猜想线段EF、MN满足什么位置关系时,才会有EF=MN,画出相应的图形,并证明你的猜想.

 

解析:(1)EF⊥MN,EF=MN;

(2)EF⊥MN,EF=MN;

(3)猜想:当EF⊥MN时,才会有EF=MN,如图,连接EF,作EF⊥MN.证明猜想:过点N作NG⊥BC,过点F作FH⊥AB,又EF⊥MN,在Rt△MNG和Rt△EFH中,∠MGN=∠EHF=90°,FH=NG,所以Rt△MNG≌ Rt△EFH,所以EF=MN

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网