题目内容

【题目】如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.则线段EF的最小值是_______cm.

【答案】

【解析】根据正方形的对角线互相平分且相等可得AO=BO,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF,再根据AE=BF,然后利用“SAS”证明△AOE和△BOF全等,根据全等三角形对应角相等可得∠AOE=∠BOF,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.

解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,

∵点E、F的速度相等,

∴AE=BF,

在△AOE和△BOF中,

OA=BO,∠AOE=∠OBF,AE=BF,

∴△AOE≌△BOF(SAS),

故答案为BOF.

(2)∵△AOE≌△BOF,

∴∠AOE=∠BOF,

∴∠AOE+∠BOE=90°,

∴∠BOF+∠BOE=90°,

∴∠EOF=90°,

在Rt△BEF中,设AE=x,则BF=x,BE=2﹣x,

EF===

∴当x=1时,EF有最小值为

故答案为

“点睛”本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,熟记正方形的性质,求出三角形全等的条件是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网