题目内容

【题目】如图,已知RtABC中,ACB=90°CA=CBDAC上一点,EBC的延长线上,且CE=CD,试猜想BDAE的关系,并说明你猜想的正确性.

【答案】猜想:BD=AE BDAE

【解析】

猜想:BD=AE ,BD⊥AE,先证明△BDC≌△AEC得出BD=AE,∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.

解:猜想:BD=AE BDAE

理由:延长BDAE于点F

∵∠ACB=90°,

∴∠ACE=∠BCD=90°.

BC=ACCD=CE

∴△BDC≌△AEC(HL).

BD=AE

∴∠CBD=∠CAE

CAE+∠E=90°.

∴∠EBF+∠E=90°.

∴∠BFE=90°,∴BFAE,即BDAE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网