题目内容
【题目】如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是( )
A.S1>S2B.S1<S2C.S1=S2D.不能确定
【答案】B
【解析】
根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.
解:如图1,设正方形DEFG的边长是x,
∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,
∴由勾股定理得:AC=5,
过B作BM⊥AC于M,交DE于N,
由三角形面积公式得:BC×AB=AC×BM,
∵AB=3,AC=5,BC=4,
∴BM=2.4,
∵四边形DEFG是正方形,
∴DG=GF=EF=DE=MN=x,DE∥AC,
∴△BDE∽△ABC,
∴=,
∴=,
∴x=,
即正方形DEFG的边长是;
∴S1=()2,
如图2,
∵HJ∥BC,
∴△AHJ∽△ABC,
∴=,即=,
∴HJ=,
∴S2=()2>()2,
∴S1<S2,
故选:B.
练习册系列答案
相关题目