题目内容
已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是
24cm2
24cm2
.分析:先求出菱形的边长,然后设菱形的两对角线分别为8x,6x,根据菱形的对角线垂直平分求出两对角线的一半,再利用勾股定理列式求出x,从而得到对角线的长,然后根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.
解答:解:∵菱形的周长是20cm,
∴边长为20÷4=5cm,
∵两条对角线的比是4:3,
∴设菱形的两对角线分别为8x,6x,
则对角线的一半分别为4x,3x,
根据勾股定理得,(4x)2+(3x)2=52,
解得x=1,
所以,两对角线分别为8cm,6cm,
所以,这个菱形的面积=
×8×6=24cm2.
故答案为:24cm2.
∴边长为20÷4=5cm,
∵两条对角线的比是4:3,
∴设菱形的两对角线分别为8x,6x,
则对角线的一半分别为4x,3x,
根据勾股定理得,(4x)2+(3x)2=52,
解得x=1,
所以,两对角线分别为8cm,6cm,
所以,这个菱形的面积=
1 |
2 |
故答案为:24cm2.
点评:本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质,以及菱形的面积等于对角线乘积的一半.
练习册系列答案
相关题目
已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是( )
A、12cm2 | B、24cm2 | C、48cm2 | D、96cm2 |