题目内容
【题目】阅读下面材料并解答问题
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为,可设,
则
∵对任意上述等式均成立,
∴且,∴,
∴
这样,分式被拆分成了一个整式与一个分式的和
解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式
(2)求出的最小值.
【答案】(1)3+;(2)8
【解析】
(1)直接把分子变形为3(x-1)+10解答即可;
(2)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b,按照题意,求出a和b的值,即可把分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:(1)=
=
=3+;
(2)由分母为,
可设,
则
.
∵对于任意的x,上述等式均成立,
∴
解得
∴
.
∴当x=0时,取得最小值8,即 的最小值是8.
练习册系列答案
相关题目