题目内容
【题目】已知CD为RtABC斜边AB上的高,以CD为直径的圆交BC于E点,交AC于F点,G为BD的中点.
(1)求证:GE为⊙O的切线;
(2)若tanB=,AD=5,求GE的长.
【答案】(1)见解析;(2)10
【解析】
(1)连DE、OE,利用圆周角定理可得∠CED=∠BED=90°,因为G为BD的中点,由直角三角形的性质可得GE=GD,再由OE=OD,易得∠OED=∠ODE,可得∠GEO=∠GDO,由CD⊥AB,可得∠GEO=∠GDO=90°,可得结论;
(2)首先由垂直的定义易得∠B=∠ACD,利用锐角三角函数的定义即可得到结论.
(1)证明:连DE、OE,
∵CD为⊙O的直径,
∴∠CED=∠BED=90°,
∵G为BD的中点,
∴GE=GD,
∴GED=∠GDE,
∵OE=OD,
∴∠OED=∠ODE,
∴∠GEO=∠GDO,
∴CD⊥AB,
∴∠GEO=∠GDO=90°,
∴GE为⊙O的切线;
(2)解:∵CD⊥AB,
∴∠ACD=90°﹣∠A,
∵∠BCA=90°,
∴∠B=90°﹣∠A,
∴∠B=∠ACD,
∵tanB===tan∠DCA==,
∴BD=4AD=20,
∵G为BD的中点,
∴EG=BD=10.
【题目】为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 | 平均数 | 众数 | 中位数 | 8分及以上人数所占百分比 |
七年级 | 7.5 | a | 7 | 45% |
八年级 | 7.5 | 8 | b | c |
八年级20名学生的测试成绩条形统计图如图:
根据以上信息,解答下列问题:
(1)直接写出上述表中的a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?