题目内容
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.
(1)求证:直线BC是⊙O的切线;
(2)若∠ABC=30°,⊙O的直径为4,求阴影部分面积.
【答案】(1)证明见解析;(2).
【解析】
(1)连接OD,由AE为直径、DE⊥AD可得出点D在⊙O上且∠DAO=∠ADO,根据AD平分∠CAB可得出∠CAD=∠DAO=∠ADO,由“内错角相等,两直线平行”可得出AC∥DO,再结合∠C=90°即可得出∠ODB=90°,进而即可证出BC是⊙O的切线;
(2)由题意得出AE=4,DO=AO=EO=AE=2,由直角三角形的性质得出CD,DE,由勾股定理求出AD,AC,由三角函数求出BC,由三角形面积、梯形面积和扇形面积公式即可得出答案.
(1)连接OD,如图所示.
在Rt△ADE中,点O为AE的中心,
∴DO=AO=EO=AE,
∴点D在⊙O上,且∠DAO=∠ADO.
∵AD平分∠CAB,
∴∠CAD=∠DAO,
∴∠ADO=∠CAD,
∴AC∥DO.
∵∠C=90°,
∴∠ODB=90°,即OD⊥BC.
∵OD为半径,
∴BC是⊙O的切线;
(2)∵⊙O的直径为4,
∴AE=4,DO=AO=EO=AE=2.
∵∠ABC=30°,
∴∠CAD=∠DAO=30°,
∴CD=AD,DE=AE=2,AD==2,
∴CD=,AC==3.
∵tan∠ABC=,
∴BC=3,
∴阴影部分面积=S△ABC﹣S梯形ODCA﹣S扇形ODE
=ACBC﹣(OD+AC)CD﹣
=×3×3﹣(2+3)×﹣
=2﹣π.
练习册系列答案
相关题目