题目内容

【题目】对任意有理数x、y定义运算如下:xy=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,12=3,23=4,并且有一个不为零的数d使得对任意有理数xd=x,求a、b、c、d的值.

【答案】a的值为5、b的值为0、c的值为﹣1、d的值为4

【解析】

试题由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.

解:∵x△d=x,∴ax+bd+cdx=x,

∴(a+cd﹣1)x+bd=0,

∵有一个不为零的数d使得对任意有理数x△d=x,

则有①,

∵1△2=3,∴a+2b+2c=3②,

∵2△3=4,∴2a+3b+6c=4③,

又∵d≠0,∴b=0,

∴有方程组

解得

故a的值为5、b的值为0、c的值为﹣1、d的值为4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网