题目内容
【题目】解方程:
(1) (x-2)2-9=0
(2)
(3).
【答案】(1)x=5或x=-1;(2)x=-;(3) x=-4.
【解析】
(1) 方程整理后,利用平方根定义开方即可求出解;(2) 把(x-1)看作一个整体,利用立方根的定义求出(x-1),然后求解即可;(3) 方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
解:(1)方程整理得:(x-2)2=9,
开方得:x-2=3或x-2=-3,
解得:=5或=-1;
(2)由8(x-1)3-1=-28得,(x-1)3=-,
所以,x-1=-,
所以,x=-+1=-;
(3)x(4x-5)-(2x+1)(2x-1)=21,
4x2-5x-(4x2-1)=21
4x2-5x-4x2+1=21
-5x+1=21,
x=-4
【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
销售额/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,与之间的关系式为______.
(4)当橘子的销售额是100元时,共卖出多少千克橘子?
【题目】小明根据学习函数的经验,对函数y=-5x+4 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | td style="width:17.7pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; border-bottom-style:solid; border-bottom-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle"> | … | |||||||||||
y | … | 4.3 | 3.2 | 0 | -2.2 | -1.4 | 0 | 2.8 | 3.7 | 4 | 3.7 | 2.8 | 0 | -1.4 | -2.2 | m | 3.2 | 4.3 | … |
其中m= ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;
(3)观察函数图象,写出一条该函数的性质 ;
(4)进一步探究函数图象发现:
①方程有 个互不相等的实数根;
②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2 >x1>2时,比较y1和y2的大小关系为:
y1 y2 (填“>”、“<”或“=”) ;
③若关于x的方程有4个互不相等的实数根,则a的取值范围是 .