题目内容

用反证法证明“三角形三个内角中,至少有一个内角小于或等于60º”。

已知:∠A,∠B,∠C是△ABC的内角。

求证:∠A,∠B,∠C中至少有一个小于或等于60º。

证明:假设求证的结论不成立,即      

∴∠A+∠B+∠C>    

这与三角形    相矛盾。

∴假设不成立

    

 

【答案】

∠A>60°、∠B>60°、∠C>60°;  180°;内角和等于180°原命题为真命题

【解析】

试题分析:已知:∠A,∠B,∠C是△ABC的内角。

求证:∠A,∠B,∠C中至少有一个小于或等于60º。

证明:假设求证的结论不成立,即∠A>60°、∠B>60°、∠C>60°;

∴∠A+∠B+∠C>180°

则这与三角形内角和等于180°相矛盾。

∴假设不成立∴原命题为真命题

考点:反证法

点评:本题难度较低,主要考查学生对反证法知识点的掌握。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网