题目内容
【题目】若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于( )
A. 120° B. 6° C. 114° D. 114°或6°
【答案】D
【解析】先根据题意画出图形,根据正多边形与圆的关系分别求出中心角∠AOC=60°,∠AOB=72°,再由等边对等角及三角形内角和定理分别求出∠OAC=54°,∠OAB=54°,然后分两种情况进行讨论:①AB、AC都在OA同侧;②AB、AC在OA两侧.
如图,连接OA,OB,OC,
∵AB是⊙O内接正五边形的一边,AC是⊙O的内接正六边形的一边,
∴∠AOC=,∠AOB==72°,
∵OA=OC=OB,
∴∠OAB=54°,∠OAC=60°,
若AB与AC在OA的同侧,∠BAC=∠OAC-∠OAB=6°,
当AB、AC在OA两侧时,则∠BAC=∠OAC+∠OAB=54°+60°=114°.
∴∠BAC=6°或114°.
故选:D
练习册系列答案
相关题目