题目内容
【题目】[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)
[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O上吗?
我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O外.请结合图④证明点D也不在⊙O内.
【证】
[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;
(1)用含α的代数式表示∠ACD的度数;
(2)求证:点B、C、A、F四点共圆;
(3)求证:点F为BE的中点.
【答案】
(1)由题意可知,AC=AD,∠CAD=α,根据等腰三角形的性质即可得到∠ACD=90°﹣ ;
(2)∵AB=AE,∠BAE=α,∴∠ABE=90°﹣ α,∴∠ACD=∠ABE,
∴B、C、A、F四点共圆;
(3)∵B、C、A、F四点共圆,
∴∠BFA+∠BCA=180°,
又∵∠ACB=90°,
∴∠BFA=90°,
∴AF⊥BE,
∵AB=AE,
∴BF=EF,
即点F为BE的中点.
【解析】【思考】【证】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,根据外角的性质得到∠ADB>∠AEB,于是得到∠ADB>∠ACB,于是得到结论; 【应用】(1)由题意可知,AC=AD,∠CAD=α,∴∠ACD=90°﹣ ;(2)根据等腰三角形的性质得到∠ABE=90°﹣ α,同时代的∠ACD=∠ABE,即可得到结论;(3)由B、C、A、F四点共圆,得到∠BFA+∠BCA=180°,推出AF⊥BE,根据等腰三角形的性质即可得到结论.
【题目】为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
用户每月用水量(m3) | 32及其以下 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43及其以上 |
户数(户) | 200 | 160 | 180 | 220 | 240 | 210 | 190 | 100 | 170 | 120 | 100 | 110 |
(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;
(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?