题目内容
【题目】如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论不正确的结论是( )
A.CD=DN;B.∠1=∠2;C.BE=CF;D.△ACN≌△ABM.
【答案】A
【解析】
利用“角角边”证明△ABE和△ACF全等,根据全等三角形对应角相等可得∠BAE=∠CAF,然后求出∠1=∠2,全等三角形对应边相等可得BE=CF,AB=AC,再利用“角边角”证明△ACN和△ABM全等.
在△ABE和△ACF中,
,
∴△ABE≌△ACF(AAS),
∴∠BAE=∠CAF,BE=CF,AB=AC,故C选项结论正确;
∴∠BAE-∠BAC=∠CAF-∠BAC,
即∠1=∠2,故B选项结论正确;
在△ACN和△ABM中,
,
∴△ACN≌△ABM(ASA),故D选项结论正确;
CD与DN的大小无法确定,故A选项结论错误.
故选:A.
练习册系列答案
相关题目