题目内容
【题目】如图,已知:AC=BC,AC⊥BC,AE⊥CF,BF⊥CF,C、E、F分别为垂足, 且∠BCF=∠ABF,CF交AB于D.
(1)判断△BCF≌△CAE,并说明理由.
(2)判断△ADC是不是等腰三角形?并说明理由.
【答案】(1)△BCF≌△CAE.理由见解析;
(2)△ADC是等腰三角形.理由见解析.
【解析】(1)解:△BCF≌△CAE.理由如下:
∵AC⊥BC,AE⊥CF,
∴∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,
∴∠CAE=∠BCF,
∵AE⊥CF,BF⊥CF,
∴∠AEC=∠F=90°,
在△BCF和△CAE中,
∵,
∴△BCF≌△CAE(AAS);
(2)解:△ADC是等腰三角形.理由如下:
∵AC⊥BC,BF⊥CF,
∴∠ACB=∠F=90°,
∴∠ACD+∠BCF=90°,∠BDF+∠ABF=90°,
∵∠BCF=∠ABF,
∴∠ACD=∠BDF,
又∵∠BDF=∠ADC(对顶角相等),
∴∠ACD=∠ADC,
∴AC=AD,
故△ADC是等腰三角形。
练习册系列答案
相关题目