题目内容
【题目】如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作:然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,①第七次操作共得到个三角形;②若要得到220个小三角形,则需要操作的次数是 .
【答案】22;73
【解析】解:∵第一次操作后,三角形共有4个;
第二次操作后,三角形共有4+3=7个;
第三次操作后,三角形共有4+3+3=10个;
…
第n次操作后,三角形共有4+3(n﹣1)=3n+1个;
所以第七次操作后小三角形个数是3×7+1=22个,
当得到220个小三角形时,3n+1=220,则n=73.
故答案是:22;73.
【考点精析】解答此题的关键在于理解数与式的规律的相关知识,掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律,以及对等边三角形的性质的理解,了解等边三角形的三个角都相等并且每个角都是60°.
【题目】“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.
根据以上信息回答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x在 范围的人数最多;
(2)补全频数分布直方图;
(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
听写正确的汉字个数x | 组中值 |
1≤x<11 | 6 |
11≤x<21 | 16 |
21≤x<31 | 26 |
31≤x<41 | 36 |
(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.