题目内容

【题目】感知:如图①,在矩形ABCD中,点E是边BC的中点,将△ABE沿AE折叠,使点B落在矩形ABCD内部的点F处,延长AF交CD于点G,连结FC,易证∠GCF=∠GFC.

探究:将图①中的矩形ABCD改为平行四边形,其他条件不变,如图②,判断∠GCF=∠GFC是否仍然相等,并说明理由.

应用:如图②,若AB=5,BC=6,则△ADG的周长为

【答案】探究:∠GCF=∠GFC,理由见解析;应用:16.

【解析】

试题分析:探究:由ABCD及折叠可得∠B+∠ECG=∠AFE+∠ECG=∠AFE+∠EFG=180°,即∠ECG=∠EFG,再根据EB=EF=EC得∠EFC=ECF,从而可得∠GCF=∠GFC;

应用:由(1)中∠GCF=∠GFC得GF=GC,AF=AB,根据△ADG的周长AD+AF+GF+GD=AD+AB+GC+GD可得.

试题解析:探究:∠GCF=∠GFC,理由如下:

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠ECG=180°,

又∵△AFE是由△ABE翻折得到,

∴∠AFE=∠B,EF=BE,

又∵∠AFE+∠EFG=180°,

∴∠ECG=∠EFG,

又∵点E是边BC的中点,

∴EC=BE,

∵EF=BE,

∴EC=EF,

∴∠ECF=∠EFC,

∴∠ECG-∠ECF=∠EFG-∠EFC,

∴∠GCF=∠GFC;

应用:∵△AFE是由△ABE翻折得到,

∴AF=AB=5,

由(1)知∠GCF=∠GFC,

∴GF=GC,

∴△ADG的周长AD+AF+GF+GD=AD+AB+GC+GD=AD+AB+CD=6+5+5=16

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网