题目内容

设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90°。
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n )在抛物线上,过点A的直线y=x+1交抛物线于另一点E,若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于_____________。
解:(1)令x=0,得y=-2,
∴C(0,-2),
∵∠ACB=90°,CO⊥AB,
∴△AOC∽△COB,
∴OA·OB=OC2
∴OB=
∴m=4,
将A(-1,0),B(4,0)代入y=ax2+bx-2,得
∴抛物线的解析式为
(2)D(1,n)代入y=,得n=-3,
,得
∴E(6,7)过E作EH⊥x轴于H,则H(6,0)
∴AH=EH=7
∴∠EAH=45°
过D作DF⊥x轴于F,则F(1,0)
∴BF=DF=3
∴∠DBF=45°
∴∠EAH=∠DBF=45°
∴∠DBH=135°,90°<∠EBA<135°
则点P只能在点B的左侧,有以下两种情况:
①若△DBP1∽△EAB,

∴BP1=
∴OP1=
∴P1,0)
②若△DBP2∽△BAE,

∴BP2=
∴OP2= 

综合①、②,得点P的坐标为:
(3)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网