题目内容
【题目】如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=95°,则∠2的度数为________.
【答案】25°
【解析】先根据折叠的性质得到∠BEF=∠B′EF,∠CFE=∠C′FE,再根据邻补角的定义得到180°∠AEF=∠1+∠AEF,180°∠AFE=∠2+∠AFE,则可计算出∠AEF=42.5°,再根据三角形内角和定理计算出∠AFE=77.5°,然后把∠AFE=77.5°代入180°∠AFE=∠2+∠AFE即可得到∠2的度数.
∵△ABC沿EF翻折,
∴∠BEF=∠B′EF,∠CFE=∠C′FE,
∴180°∠AEF=∠1+∠AEF,180°∠AFE=∠2+∠AFE,
∵∠1=95°,
∴∠AEF=12(180°95°)=42.5°,
∵∠A+∠AEF+∠AFE=180°,
∴∠AFE=180°60°42.5°=77.5°,
∴180°77.5=∠2+77.5°,
∴∠2=25°.
故答案为:25°.
练习册系列答案
相关题目