题目内容

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

【答案】解: 延长AD交BC的延长线于E,作DF⊥BE于F,

∵∠BCD=150°,
∴∠DCF=30°,又CD=4,
∴DF=2,CF= =2
由题意得∠E=30°,
∴EF= =2
∴BE=BC+CF+EF=6+4
∴AB=BE×tanE=(6+4 )× =(2 +4)米,
答:电线杆的高度为(2 +4)米
【解析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
【考点精析】认真审题,首先需要了解关于仰角俯角问题(仰角:视线在水平线上方的角;俯角:视线在水平线下方的角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网