题目内容
【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-x-6交y轴与点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM的最小值.
【答案】(1)y=-x2-2x+4;(2)G(-2,4);(3)①H(0,-1);②
【解析】分析:(1)利用待定系数法求出抛物线解析式;
(2)先利用待定系数法求出直线AB的解析式,进而利用平行四边形的对边相等建立方程求解即可;
(3)①先判断出要以点A,E,F,H为顶点的四边形是矩形,只有EF为对角线,利用中点坐标公式建立方程即可;
②先取EG的中点P进而判断出△PEM∽△MEA即可得出PM=AM,连接CP交圆E于M,再求出点P的坐标即可得出结论.
详解:(1)(1)∵点A(-4,-4),B(0,4)在抛物线y=-x2+bx+c上,
∴,
∴,
∴抛物线的解析式为y=-x2-2x+4;
(2)设直线AB的表达式为y=kx+b
∵直线AB过点A(-4,-4),B(0,4),
∴,解得,
∴y=2x+4
设E(m,2m+4),则G(m,-m2-2m+4)
∵四边形GEOB是平行四边形,
∴GE=OB=4,
∴-m2-2m+4-2m-4=4,解得m=-2
∴G(-2,4)
(3)①设E(m,2m+4),则F(m,-m-6)
过A作AN⊥EG,过H作HQ⊥EG
四边形AFHE是矩形,∴△PFN≌△HEQ,∴AN=QH,∴m+4=-m,解得m=-2,E(-2,0)
EQ=FN=-4+m+6=1
∴H(0,-1)
②由题意可得,E(-2,0),H(0,-1),∴EH=,即⊙E的半径为,
∵M点在⊙E上,∴EM=
∵A(-4,-4),E(-2,0),∴AE=2
在AE上截取EP=EM,则EP=,连接PM,
在ΔEPM与ΔEMA中,∵====,∠PEM=∠MEA,∴ΔEPM∽ΔEMA∴PM=AM
∴线段PC的长即为AM+CM的最小值
由EP=EM=AE=×2=,AP=AE-PE= , AC=2 ∴PC=
即AM+CM的最小值为.