题目内容
【题目】(10分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
【答案】(1)见解析;(2)
【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;
(2)求出△BEC∽△BCA,得出比例式,代入求出即可.
试题解析:(1)证明:连接OE、EC.
∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB.
∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;
(2)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC2=BEBA.∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x.∵BC=6,∴62=2x3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.
练习册系列答案
相关题目