题目内容

【题目】如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1 , B2 , B3 , …,则B2014的坐标为

【答案】(1342,0)
【解析】解:连接AC,如图所示.

∵四边形OABC是菱形,

∴OA=AB=BC=OC.

∵∠ABC=60°,

∴△ABC是等边三角形.

∴AC=AB.

∴AC=OA.

∵OA=1,

∴AC=1.

画出第5次、第6次、第7次翻转后的图形,如图所示.

由图可知:每翻转6次,图形向右平移4.

∵2014=335×6+4,

∴点B4向右平移1340(即335×4)到点B2014

∵B4的坐标为(2,0),

∴B2014的坐标为(2+1340,0),

∴B2014的坐标为(1342,0).

故答案为:(1342,0).

连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2014=335×6+4,因此点B4向右平移1340(即335×4)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网