题目内容
【题目】如图,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的Bˊ点,AE是折痕.
(1)试判断BˊE与DC的位置关系.
(2)如果∠C=140°,求∠AEB的度数.
【答案】
(1)解:由折叠的性质,得
∠B=∠AB′E=90°,
∴∠AB′E=∠C=90°,
∴B′E∥DC
(2)解:由四边形的一组对角互补,得
∠DAB+∠C=180°.
由∠C=140°得
∠DAB=180°﹣∠C=40°.
由翻折的性质,得
∠BAE= ∠DAB= ×40°=20°
【解析】(1)根据翻折的性质,可得∠AB′E,根据平行线的判定;(2)根据四边形的性质,可得∠DAB的度数,根据翻折的性质,可得答案.
【考点精析】利用翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目
【题目】九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天) | 1 | 30 | 60 | 90 |
每天销售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.