题目内容
【题目】如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x= ,且经过点(2,0).下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是( )
A. ①②④ B. ③④ C. ①③④ D. ①②
【答案】A
【解析】解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴ =,∴b=﹣a>0,∴abc<0.
故①正确;
②∵由①中知b=﹣a,∴a+b=0,故②正确;
③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.
故③错误;
④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小, <3,∴y1<y2.
故④正确;
综上所述,正确的结论是①②④.
故选A.
【题目】在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 70 | 128 | 171 | 302 | 481 | 599 | 903 |
摸到白球的频率 | 0.75 | 0.64 | 0.57 | 0.604 | 0.601 | 0.599 | 0.602 |
(1)请估计:当n很大时,摸到白球的概率约为 .(精确到0.1)
(2)估算盒子里有白球 个.
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是 .
【题目】中华文明,源远流长;中华汉字,寓意深广,为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写大赛”为了解本次大赛的成绩,校团委随机抽取了其中若干名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩分 | 频数人 | 频率 |
10 | ||
| 30 | |
| 40 | n |
| m | |
| 50 | |
a | 1 |
请根据所给信息,解答下列问题:
______,______,______;
补全频数直方图;
这若干名学生成绩的中位数会落在______分数段;
若成绩在90分以上包括90分的为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?