题目内容
【题目】如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC交于点E,若AD=, AC=3.则DE长为( )
A. B. 2 C. D.
【答案】B
【解析】
连接OD,CD.由切线长定理得CD=DE,可证明△ADC∽△ACB,则可求得BD,再由勾股定理求得BC,可证明BE=DE,从而求得DE的长.
连接OD,CD.
∵AC为⊙O的直径,
∴∠ADC=90°,
∵AD=,AC=3.
∴CD=,
∵OD=OC=OA,
∴∠OCD=∠ODC,
∵DE是切线,
∴∠CDE+∠ODC=90°.
∵∠OCD+∠DCB=90°,
∴∠BCD=∠CDE,
∴DE=CE.
∴△ADC∽△ACB,
∴∠B=∠ACD,
∴,
∴BC==4,
∵∠ACD+∠DCB=90°,
∴∠B+∠DCB=90°,∠B+∠CDE=90°,∠CDE+∠BDE=90°,
∴∠B=∠BDE,
∴BE=DE,
∴BE=CE=DE.
∴DE=BC=×4=2.
故选:B.
练习册系列答案
相关题目