题目内容
【题目】直线y=2x+m(m>0)与x轴交于点A(﹣2,0),直线y=﹣x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.
(1)求点D的坐标;
(2)求出四边形AOCD的面积;
(3)若点P为x轴上一动点,且使PD+PC的值最小,不写过程,直接写出点P的坐标。
【答案】(1)D点坐标为(﹣, );
(2)四边形AOCD的面积=;
(3)点E的坐标为(2﹣2,0)、(﹣2﹣2,0)、(2,0)、(0,0).
【解析】试题分析:(1)先把A点坐标代入y=2x+m得到m=4,则y=-2x+4,再利用AB=4可得到B点坐标为(2,0),则把B点坐标代入y=-x+n可得到n=2,则y=-x+2,然后根据两直线相交的问题,通过解方程组得到D点坐标;
(2)先确定C点坐标为(0,2),然后利用四边形AOCD的面积=S△DAB-S△COB进行计算即可;(3)先利用A、C两点的坐标特征得到△ACO为等腰直角三角形,AC=,然后分类讨论:当AE=AC=时,以A点为圆心,2画弧交x轴于E1点和E2点,再写出它们的坐标;当CE=CA时,E3点与点A关于y轴对称,即可得到它的坐标;当EA=EC时,E4点为坐标原点.
试题解析:(1)把A(﹣2,0)代入y=2x+m得﹣4+m=0,
解得m=4,
∴y=﹣2x+4,
∵AB=4,A(﹣2,0),
∴B点坐标为(2,0),
把B(2,0)代入y=﹣x+n得﹣2+n=0,
解得n=2,
∴y=﹣x+2,
解方程组得,
∴D点坐标为(﹣, );
(2)当x=0时,y=﹣x+2=2,
∴C点坐标为(0,2),
∴四边形AOCD的面积=S△DAB﹣S△COB=×4×﹣×2×2=;
(3)∵A(﹣2,0),C(0,2),
∴AC=,
当AE=AC=时,E1点的坐标为(﹣2,0),E2点的坐标为(﹣﹣2,0);
当CE=CA时,E3点的坐标为(2,0),
当EA=EC时,E4点的坐标为(0,0),
综上所述,点E的坐标为(﹣2,0)、(﹣﹣2,0)、(2,0)、(0,0).